TRANSISTOR
Transistor adalah alat semikonduktor
yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung
(switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi
lainnya. Transistor dapat berfungsi semacam kran listrik, dimana
berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET),
memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber
listriknya.
Transistor through-hole (dibandingkan dengan pita ukur sentimeter)
Pada
umumnya, transistor memiliki 3 terminal, yaitu Basis (B), Emitor (E)
dan Kolektot (C). Tegangan yang di satu terminalnya misalnya Emitor
dapat dipakai untuk mengatur arus dan tegangan yang lebih besar daripada
arus input Basis, yaitu pada keluaran tegangan dan arus output
Kolektor.
Transistor
merupakan komponen yang sangat penting dalam dunia elektronik modern.
Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat).
Rangkaian analog melingkupi pengeras suara, sumber listrik stabil
(stabilisator) dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori dan fungsi rangkaian-rangkaian lainnya.
Cara Kerja Semikonduktor
Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.
Untuk mengerti cara kerja
semikonduktor,
misalkan sebuah gelas berisi air murni. Jika sepasang konduktor
dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan
elektrolisis (sebelum air berubah menjadi
Hidrogen dan
Oksigen),
tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan
(charge carriers). Sehingga, air murni dianggap sebagai
isolator.
Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan
mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers,
ion)
terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun
tidak banyak. Garam dapur sendiri adalah non-konduktor (
isolator), karena pembawa muatanya tidak bebas.
Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik,
dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup
kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik
akan memberikan elektron
bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini
karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon
hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan
(oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon
tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang
bermuatan negatif) telah terbentuk.
Selain dari itu, silikon dapat dicampur dengan
Boron
untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3
elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan
"lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata
letak kristal silikon.
Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh
emisi thermionic dari sebuah
katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).
Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak
menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan
ini akan terdistribusi secara merata di dalam materi semikonduktor.
Namun di dalam sebuah transistor bipolar (atau diode junction) dimana
sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam
satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke
arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan
tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.
Kenaikan dari jumlah pencemar (doping level) akan meningkatkan
konduktivitas dari materi semikonduktor, asalkan tata-letak kristal
silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah
terminal emiter memiliki jumlah doping yang lebih besar dibandingkan
dengan terminal basis. Rasio perbandingan antara doping emiter dan basis
adalah satu dari banyak faktor yang menentukan sifat penguatan arus
(current gain) dari transistor tersebut.
Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil,
dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam
keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan
adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam
metal, untuk mengubah metal menjadi isolator, pembawa muatan harus
disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini
sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya.
Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam
beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu
pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan
mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible
(tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor,
listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor
dengan doping dapat diubah menjadi isolator, sedangkan metal tidak.
Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan,
yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah
aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah
depletion zone. Depletion zone ini terbentuk karena transistor tersebut
diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara
basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua
diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat
dengan menyambungkan dua diode. Untuk membuat transistor,
bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan
sebuah daerah basis yang sangat tipis.
Cara Kerja Transistor
Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor,
bipolar junction transistor (BJT atau transistor bipolar) dan
field-effect transistor (FET), yang masing-masing bekerja secara berbeda.
Transistor bipolar dinamakan demikian karena kanal konduksi utamanya
menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk
membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu
daerah/lapisan pembatas dinamakan
depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.
FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis
pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam
FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan
depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar
dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan
dari daerah perbatasan ini dapat diubah dengan perubahan tegangan yang
diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat
artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.
Jenis - jenis Transistor
Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:
- Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
- Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
- Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
- Polaritas: NPN atau N-channel, PNP atau P-channel
- Maximum kapasitas daya: Low Power, Medium Power, High Power
- Maximum frekuensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
- Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain
BJT
BJT
(Bipolar Junction Transistor) adalah salah satu dari dua jenis
transistor. Cara kerja BJT dapat dibayangkan sebagai dua diode yang
terminal positif atau negatifnya berdempet, sehingga ada tiga terminal.
Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).
Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat
menghasilkan perubahan arus listrik dalam jumlah besar pada terminal
kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai
penguat elektronik. Rasio antara arus pada koletor dengan arus pada
basis biasanya dilambangkan dengan β atau
hFE. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.
FET
FET dibagi menjadi dua keluarga:
Junction FET (
JFET) dan
Insulated Gate FET (IGFET) atau juga dikenal sebagai
Metal Oxide Silicon (atau
Semiconductor)
FET (
MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah
diode
dengan kanal (materi semikonduktor antara Source dan Drain). Secara
fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state
dari tabung vakum, yang juga membentuk sebuah diode antara
grid dan
katode.
Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode",
keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan
arus listrik dibawah kontrol tegangan input.
FET lebih jauh lagi dibagi menjadi tipe
enhancement mode dan
depletion mode.
Mode menandakan polaritas dari tegangan gate dibandingkan dengan source
saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai
contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan
source, sedangkan dalam enhancement mode, gate adalah positif. Untuk
kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di
antara source dan drain akan meningkat. Untuk P-channel FET,
polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe
enhancement mode, dan hampir semua JFET adalah tipe depletion mo